Comparing Partial Likelihood and Robust Estimation Methods for the Cox Regression Model
نویسندگان
چکیده
The Cox proportional hazards model is ubiquitous in time-to-event studies of political processes. Plausible deviations from correct specification and operationalization caused by problems such as measurement error or omitted variables can produce substantial bias when the Cox model is estimated by conventional partial likelihood maximization (PLM). One alternative is an iteratively reweighted robust (IRR) estimator, which can reduce this bias. However, the utility of IRR is limited by the fact that there is currently no method for determining whether PLM or IRR is more appropriate for a particular sample of data. Here, we develop and evaluate a novel test for selecting between the two estimators. Then, we apply the test to political science data. We demonstrate that PLM and IRR can each be optimal, that our test is effective in choosing between them, and that substantive conclusions can depend on which one is used.
منابع مشابه
Robust estimation for the Cox regression model based on trimming.
We propose a robust Cox regression model with outliers. The model is fit by trimming the smallest contributions to the partial likelihood. To do so, we implement a Metropolis-type maximization routine, and show its convergence to a global optimum. We discuss global robustness properties of the approach, which is illustrated and compared through simulations. We finally fit the model on an origin...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملA Monte Carlo Study to Evaluate the Robust Standard Error Feature in the PHREG procedure
Cox proportional hazards model is the most commonly used regression model to analyze survival data. The regression parameters in a Cox model can be estimated by maximizing the partial likelihood (Cox 1972, 1975). When the association is presented in the data due to matching design, recurrent events or multiple types of failure, the marginal approach can be used to adjust for association. In thi...
متن کاملAnalysis of a Problem Using Various Visions
In this paper an applied problem, where the response of interest is the number of success in a specific experiment, is considered and by various visions is studied. The effects of outlier values of response on results of a regression analysis are so important to be studied. For this reason, using diagnostic methods, outlier response values are recognized. It is shown that use of arc-sine ...
متن کامل